/ 11.		(a)	. ,	$H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2;$	
			(p	enalise C₂H₅O once only in this question)	1
		(ii)	<u> </u>	trated H ₂ SO ₄ OR concentrated H ₃ PO ₄ OR Al ₂ O ₃ ; enalise aqueous or dilute as a contradiction)	1
				\rightarrow C ₂ H ₄ + H ₂ O OR C ₂ H ₅ OH \rightarrow H ₂ C = CH ₂ + H ₂ O; enalise CH ₂ CH ₂ and CH ₂ -CH ₂ and CH ₂ : CH ₂ for ethene)	1
	(b)	Nic	cel OR Ni	OR platinum OR Pt OR palladium OR Pd;	1
		Hyd	rogen OR	H_2 ;	1
	(c)	(i)	C ₁₈ H ₃₄ O ₂	₂ Only;	1
			C ₉ H ₁₇ O (e.	Only; mpirical formula is not consequential on molecular formula)	1
		(ii)	•	aturated compound) contains (at least) one double bond	
			OR		
			Contain <i>(m</i>	s C=C; nust be a positive statement)	1
		<i>(</i> ····)	M4 D		
		(iii)		omine water	
			OR		
			Br₂(aq)		
			OR		
			Bromine	,	
			OR		

Br₂;

(penalise "bromide water", but mark on)

M1: decolourised or goes colourless

OR

from brown/red/orange/yellow to colourless;

(Must be "colourless" not "clear" for M2)
(chemical error if no reagent or wrong reagent, loses both marks) (credit KMnO ₄ for M1, (purple) to colourless for M2 (if acidified) OR (purple) to brown/brown precipitate (if alkaline or unspecified) (No credit for hydrogen or iodine as reagents)

[10]

1

M2. (a) (i) Reagent: Hydrogen of H₂ (1)

Conditions: Ni (catalyst) (Ignore Pt) (1)

100 – 200 °C or heat (1)

Not 'high temp' or 'warm'

M1 = 0, M2 = 1 then M3 = 0 max

or M1 = M2 = 0 then M3 = 0

(ii) Difference in structure: soft margarine less hydrogenated or has more C=C bonds or is more unsaturated than hard margarine (1)
 Difference in melting point: soft has lower melting point (1)
 Must be comparison

M3 tied to M1. Only award M3 if M1 earned

5

- (b) (i) 3-methylbutan-2-ol **(1)**No alternatives
 - (ii) elimination or dehydration (1)

(iii) (c) H₂SO₄ or (c) H₃PO₄ – name or correct formula (1)

(iv)

Alkene 1 Alkene 2 $CH_2 = C - CH_3$ $H - CH_3$ $H - CH_3$ $CH_3 - C = C - CH_3$ $H \quad CH_3$ (1)

Double bond must be shown Accept any correct unambiguous structures if but- 1-ene and but-2-ene offered, allow M2

[10]

5

M3. (a) (i) 2-methylpropan-2-ol (1) OR the second one

 $ignore \ \underline{additional} \ (aq) \qquad \textbf{(1)}$ Dehydrating agent: $\overset{conc}{\longleftarrow} H_2 SO_4 \ OR \ conc \ H_3 PO_4 \ OR \ Al_2 O_3$ (ii)

$$CH_{3} \xrightarrow{\stackrel{\mid}{C} - CH_{3}} - CH_{3} \xrightarrow{CH_{3} - C = CH_{2} + H_{2}O} (1)$$

$$CH_{3} \xrightarrow{\mid} CH_{3} \xrightarrow{C} - CH_{2} + H_{2}O$$

Equation:

Allow C₄H₃OH in equation provided RHS is correct if b(i) is blank, b(ii) equation must be full for credit i.e. NOT C₄H₉OH Mark consequential on b(i)

3

(b) (i) Isomer: butan-2-ol OR the fourth one [look at name in table] wrong isomer = CE

Structure of the ketone:

(ii) Isomer: butan-1-ol OR the first one
OR 2-methylpropan-1-ol OR the third one
[look at name in table]

Wrong isomer = CE Structure of the aldehyde:

(iii)

Reagent	M1	Tollen's (AgNO₃/NH₃)	Fehling's
Observation with ketone	M2	Stays colourless no change	stays blue no change
Observation with aldehyde	M3	Silver mirror black ppt	red solid orange/red brown/ red ppt/solid

Other include(*)

K₂Cr₂O₇ / H₂SO₄

KMnO₄/H₂SO₄

Schiff's

Benedict's

Wrong reagent R

No reagent = CE

Penalise AgNO₃ [Ag(NH₃)₂] but allow M2 and M3 sequentially.

(*) K₂Cr₂O₇ / H₂SO₄ acidified <u>ketone</u> <u>aldehyde</u>

orange green

no change

KMnO₄/H₂SO₄ acidified purple colourless

no change (v. Pale pink)

 $\textit{Benedict's} \ \equiv \ \textit{Fehling's} \qquad ; \qquad \textit{Schiff's colouless} \rightarrow \textit{pink with CHO}$

violet

(c) Equation: $CH_3CH_2CH_2CH_2OH$ (or C_4H_9OH) + 2[O] \rightarrow $CH_3CH_2CH_2COOH$ (or C_3H_7COOH) + H_2O (1)

Name of product: butanoic acid (1)

Accept butaneoic acid

,

[12]

7

M4. (a) Reaction 2: NaOH OR KOH (1) M1 alcohol (ic) OR ethanol (ic)(1) M2 ignore heat

Condition mark <u>linked to correct reagent</u> but award M2 if OH or base or alkali mentioned

Reaction 3: concentrated H₂SO₄ OR H₃PO₄ M1 (1) heat (1) M2 OR 150°C - 200°C

Condition mark <u>linked to correct reagent</u> but award M2 if H_2SO_4 or H_3PO_4 , but <u>not</u> concentrated

Penalise reagent and condition if dilute H₂SO₄ / H₃PO₄

4

(b) Mechanism:

$$\begin{array}{c} HO = (\mathbf{1})^{M1} \\ HO = (\mathbf{1})^{M2} \\ HO = (\mathbf{1})^{M2} \\ HO = (\mathbf{1})^{M2} \\ HO = (\mathbf{1})^{M2} \\ HO = (\mathbf{1})^{M3} \\ HO = ($$

Award M3 (C—Cl) independently
M1 and M2 must be to / from correct places

E1 mechanism possible in which M2

<u>Name</u>: of mechanism = elimination (1)

NOT dehydrohalogenation

Ignore "base" OR "nucleophilic" before elimination

Reason: Reaction 2 has (very) low yield (1)

QoL OR chloroethane has to be made (from ethane) OR chloroethane is expensive OR chloroethane is not redily available

(c) Mechanism:

Name of mechanism = elimination (1)

NOT dehydration alone

Reason: Ethanol could come from (fermentation of) <u>renewable</u>

QoL sugars / glucose / carbohydrates / sources (1)

[15]

6

5

[1]

1

[8]

M6.		(a)	M1	fermentation	1
		M2	deł	nydration or elimination	1
	(b)	(i)		ast OR zymase OR an enzyme	1
		(ii)	<u>con</u>	<u>centrated</u> sulphuric or phosphoric acid (penalise aqueous or dilute as a contradiction)	1
	(c)	(i)	prin	nary or 1°	1
		(ii)	OR	ar or glucose or ethanol is renewable ethanol does not contain sulphur-containing impurities ethanol produces <u>less</u> pollution or is <u>less</u> smoky or <u>less</u> CO/C (the objective is a positive statement about ethanol) (penalise the idea that ethanol is an infinite source or vague statements that ethanol has less impurities) (penalise the	
				idea that ethanol produces no pollution)	1
	(d)	C₂H	$_6 ightarrow {\sf C}$	$_{2}H_{4}+H_{2}$	1
	(e)	Ado	lition	(ignore self or chain as a preface to "addition ") (penalise additional)	1

M7.D

[1]